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Key Points:18

• Near-Real-Time solar wind data show increased short-term variability and occa-19

sional anomalous values compared to post-processed data.20
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• Data gaps are more prevalent in the plasma moments than the magnetic field from23

ACE and DSCOVR, but DSCOVR is more continuous.24
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Abstract25

Space weather represents a severe threat to ground-based infrastructure, satellites and26

communications. Accurately forecasting when such threats are likely (e.g. when we may27

see large induced currents) will help to mitigate the societal and financial costs. In re-28

cent years computational models have been created that can forecast hazardous inter-29

vals, however they generally use post-processed “science” solar wind data from upstream30

of the Earth. In this work we investigate the quality and continuity of the data that are31

available in Near-Real-Time (NRT) from the ACE and DSCOVR spacecraft. In general,32

the data available in NRT corresponds well with post-processed data, however there are33

three main areas of concern: greater short-term variability in the NRT data, occasional34

anomalous values and frequent data gaps. Some space weather models are able to com-35

pensate for these issues if they are also present in the data used to fit (or train) the model,36

while others will require extra checks to be implemented in order to produce high qual-37

ity forecasts. We find that the DSCOVR NRT data are generally more continuous, though38

they have been available for small fraction of a solar cycle and therefore DSCOVR has39

experienced a limited range of solar wind conditions. We find that short gaps are the most40

common, and are most frequently found in the plasma data. To maximize forecast avail-41

ability we suggest the implementation of limited interpolation if possible, e.g. for gaps42

of five minutes or less, which could increase the fraction of valid input data considerably.43

Plain Language Summary44

The variable plasma conditions in near-Earth space can create hazards for mod-45

ern society. These include the generation of anomalous ground currents that pose a threat46

to the operation of infrastructure such as high voltage power grids. Forecasts of inter-47

vals when we are likely to be at risk generally use solar wind measurements gathered by48

satellites from upstream of the Earth. Various computational models have shown skill49

in predicting risk intervals; however, they are generally created using scientific quality50

data which are not available in near-real-time (NRT). To prepare for transitioning such51

models to operational use we assess the similarities and differences between the scien-52

tific quality and NRT data. We assess the properties and frequency of data gaps in the53

NRT data, to build an understanding of how to maximize the time for which forecasts54

can be successfully created.55

1 Introduction56

Space weather has the potential to pose a severe threat to modern society. The Earth’s57

magnetosphere is constantly buffeted by the solar wind that emanates from the Sun. It58

is the variable nature of the solar wind that leads to a highly dynamic environment in59

near-Earth space. There are many different facets to space weather, including the chang-60

ing radiation environment in near-Earth space, a hazard that faces Earth orbiting satel-61

lites (D. Baker et al., 1987; Iucci et al., 2005), and strong ground magnetic field variabil-62

ity that can induce damaging currents (Geomagnetically Induced Currents, GICs) in con-63

ductive infrastructure (Boteler et al., 1998; Boteler, 2021; Rajput et al., 2020). Forecast-64

ing intervals of risk in a timely manner is key; this allows necessary mitigating action65

to be taken.66

Space weather forecasts are typically driven by data obtained upstream of the Earth67

at the L1 point (e.g. D. N. Baker et al., 1990; Wing et al., 2005; Forsyth et al., 2020; Keesee68

et al., 2020; A. W. Smith, Forsyth, Rae, Garton, et al., 2021; Chu et al., 2021), approx-69

imately 1.5 million km ahead of the Earth. Given the speed of the solar wind, this pro-70

vides between 20 - 90 minutes of warning before solar wind plasma encounters the Earth71

(Baumann & McCloskey, 2021). To account for the variable time delay between the plasma72

measured at L1 and the arrival of that plasma at the Earth, many forecast models prop-73

agate the measurement to a fixed point relative to the Earth, the bow shock for exam-74
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ple (e.g. Cash et al., 2016; Baumann & McCloskey, 2021). Such methods are present in75

commonly used scientific datasets, such as the OMNI database (https://omniweb.gsfc.nasa.gov/)76

(Weimer & King, 2008), and will have implications for data continuity.77

Further, most current space weather forecasting models have been developed us-78

ing post-processed, scientific quality data provided by the spacecraft at L1, or combined79

data products such as OMNI (e.g. Wintoft et al., 2017; Keesee et al., 2020; A. W. Smith,80

Forsyth, Rae, Garton, et al., 2021). Such data are generally only available after an ex-81

tended period, beyond the interval in which a timely forecast must be made. Data are82

also available in near-real time (NRT), usually within five minutes of acquisition by the83

spacecraft (e.g. Zwickl et al., 1998). However, given limited telemetry and processing84

the NRT data are an approximation of the full scientific data that will later be available.85

This may lead to differences in the value that the data take, and also whether data are86

available for some intervals (e.g. Machol et al., 2013). Nonetheless, the NRT data must87

be used in order to provide actionable forecasts of upcoming hazardous space weather.88

In this work we explore how we may best use the data available in NRT to produce89

space weather forecasts. We will use the example of the space weather threat to ground90

based infrastructure through GICs. GICs pose a severe threat to continuous and reli-91

able power network operation in many countries around the world (e.g. Gaunt & Co-92

etzee, 2007; Marshall et al., 2012), particularly at higher latitude locations (e.g. Bolduc,93

2002). Even at mid-latitude locations, such as the UK, the estimated cost of a major ge-94

omagnetic storm - one that leads to a widespread and long-lasting interruption of elec-95

trical supply - has been estimated at billions of dollars a day (Oughton et al., 2017). How-96

ever, with sufficient warning mitigating actions may be taken that would reduce this cost97

considerably (Eastwood et al., 2018; Oughton et al., 2019). Therefore, the forecasting98

and mitigation of large, damaging GICs is a critical endeavour.99

GICs are driven by magnetic field variability at Earth’s surface as a consequence100

of Faraday’s law of induction. Though mainly discussed with respect to power networks101

(e.g. Pulkkinen et al., 2005; Mac Manus et al., 2017; Divett et al., 2018; Rajput et al.,102

2020), GICs may be induced in any large scale conducting infrastructure, such as pipelines103

(e.g. Campbell, 1980; Gummow & Eng, 2002; Viljanen et al., 2010; Dimmock et al., 2021)104

and railways (e.g. Wik et al., 2009; Liu et al., 2016; Love et al., 2019), with consequences105

ranging from increased corrosion to direct component failure. Ultimately strong mag-106

netic field variability is driven by a myriad of magnetospheric processes in near-Earth107

space (e.g. Heyns et al., 2021; Rogers et al., 2020; Tsurutani & Hajra, 2021). Extreme108

field fluctuations are often linked to global scale transient phenomena such as geomag-109

netic storms (Kappenman & Albertson, 1990; Dimmock et al., 2019), substorms (Viljanen110

et al., 2006; Turnbull et al., 2009; Freeman et al., 2019) and sudden commencements (Rodger111

et al., 2017; A. W. Smith et al., 2019; A. W. Smith, Forsyth, Rae, Rodger, & Freeman,112

2021).113

Work in recent years has explored both empirical and first-principles methods to114

forecast the surface geomagnetic field or geomagnetic perturbations. These methods have115

included statistical techniques (e.g. Weigel et al., 2002; Weimer, 2013; Shore et al., 2017),116

global scale physics-based (Magneto-HydroDynamic, MHD) models (e.g. Pulkkinen et117

al., 2011, 2013; Tõth et al., 2014; Welling, 2019), machine learning-based techniques (e.g.118

Gleisner & Lundstedt, 2001; Wintoft et al., 2015, 2017; Keesee et al., 2020; A. W. Smith,119

Forsyth, Rae, Garton, et al., 2021; Blandin et al., 2022; Pinto et al., 2022; Upendran et120

al., 2022), or combinations of these methods (e.g. Camporeale et al., 2020). The fore-121

cast geomagnetic (or geoelectric) field predictions can then be used to drive models based122

on the local geology and properties of the power network to indirectly obtain GIC es-123

timates (Beggan et al., 2013; Blake et al., 2016, 2018; Divett et al., 2018, 2020; Dimmock124

et al., 2021; Grawe & Makela, 2021; Mac Manus et al., 2022). Each model that is used125

to forecast the geomagnetic consequences of space weather will use the input solar wind126
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data in a distinct fashion, and therefore may be impacted differently by the ways in which127

the NRT and scientific data differ.128

In this study we explore the data that are available from the L1 point in NRT and129

investigate how they may be used by space weather forecasting models. In Section 2 we130

describe the data, while in Section 3 we evaluate the NRT data, including comparisons131

to the more commonly used scientific quality data. In Section 4 we show the results of132

training an example forecasting model on the NRT data, using a model based on A. W. Smith,133

Forsyth, Rae, Garton, et al. (2021). Section 5 then discusses the results in the context134

of producing space weather forecasts in near real time.135

2 Data136

In this study we use and explore the data made available by SWPC (the Space Weather137

Prediction Center) in near real time (NRT) from the ACE (Advanced Composition Ex-138

plorer) and DSCOVR (Deep Space Climate Observatory) satellites located at L1. ACE139

launched in 1997 as a part of the NASA Explorer program and has provided solar wind140

observations since 1998 (Stone et al., 1998). Meanwhile, DSCOVR was a NASA/NOAA141

mission that launched more recently in 2015. The NRT data is provided at one minute142

resolution (Zwickl et al., 1998). For the magnetic field we consider the three GSM (Geo-143

centric Solar Magnetospheric) components of the magnetic field (BGSM
X , BGSM

Y , BGSM
Z )144

and the total field strength (|B|) (C. Smith et al., 1998). Meanwhile, for the plasma data145

we evaluate the derived proton density (np), solar wind bulk speed (V ) and ion temper-146

ature (Ti) (McComas et al., 1998; Aellig et al., 2001).147

The ACE spacecraft was the operational real time solar wind monitor at L1 un-148

til mid-2017, at which time it was replaced by DSCOVR. In this study we therefore use149

data from ACE between 1999 and 2015 (inclusive) and from DSCOVR between 2018 and150

2020 (inclusive). This selection ensures we are using intervals in which each spacecraft151

was the primary real time operational solar wind monitor, and therefore prioritized for152

telemetry downlink. We note that even though DSCOVR is currently the operational153

real time solar wind monitor, data from ACE may occasionally be used to fill large miss-154

ing intervals in the DSCOVR data. Due to issues with the spacecraft, DSCOVR data155

are largely absent between 06/26/19 and 02/26/20, however we do not perform any sub-156

stitution with ACE during this period, and simply use the data that are available. Switch-157

ing the data between spacecraft that are not co-located or cross-calibrated results in its158

own challenges that are beyond the scope of this work.159

In Sections 3 and 4 we use scientific quality data for comparative purposes. For ACE160

we use H0 data (level 2), that have been re-sampled to the same one minute cadence as161

the NRT data. For the magnetic field data this means they are down sampled from a162

16s cadence, while the plasma moments are up sampled from a 64s cadence. We note163

that if we instead down sampled the NRT measurements to 64s prior to running the anal-164

ysis it would result in very small changes (≤ 0.4%) to the quantitative comparisons per-165

formed. Meanwhile, for DSCOVR we use H0 magnetic field data (down-sampled from166

1s resolution), and H1 plasma moments at a one minute resolution. The DSCOVR H1167

plasma moments are currently only available until 06/27/2019, limiting the time inter-168

val for which the comparison with the NRT data can be evaluated.169

3 Data Evaluation170

The NRT data from the DSCOVR and ACE spacecraft at L1 are available within171

minutes of recording by the spacecraft and are therefore automatically processed. On172

the ground further processing steps, such as manual data review, data cleansing, more173

complex fitting methods and recalibration are used to produce science quality data. It174

is important to consider any differences between these two types of data when moving175
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space weather models from the science quality data on which they were likely developed/evaluated176

to the operational NRT data. Though DSCOVR is the current operational solar wind177

monitor some models require large quantities of training data and thus the historical ACE178

NRT data are also of interest. Below, we evaluate the NRT data values for ACE and DSCOVR,179

as well as their continuity.180

3.1 Data Validity181

First, we compare the values returned by the NRT data and the equivalent science182

quality data that is released later after post-processing. Figure 1 shows a series of two-183

dimensional histograms of the occurrence of plasma moment values in these data sets184

for ACE (left) and DSCOVR (right). We note that if either data set (NRT or science)185

is missing then that interval is not represented in Figure 1. Additionally, in this anal-186

ysis our base assumption is that the science data are the “correct” values, to which the187

NRT data represent an initial estimate. Therefore, in an ideal situation we would ob-188

serve the case where both the science and NRT values are close, and lie along the red189

dashed lines (or the NRT data are within ±10% of the scientific values). However, we190

see deviations from this for both the ACE and DSCOVR data.191

Inspecting the results for the ACE data (left of Figure 1) we see that the plasma192

velocity is best represented in the NRT data (Figure 1c), with the histogram most closely193

following the diagonal line of equality and the vast majority of the data (96%) being bounded194

by the orange ±10% lines. In contrast, the solar wind density (Figure 1a) and ion tem-195

perature (Figure 1e) are less well captured by the ACE NRT data, showing much larger196

spreads: only ∼ 20−30% of both NRT data sets are within 10% of the science values.197

We also see evidence for a hard-coded lower limit to the NRT ion temperatures (Figure198

1e).199

Considering the DSCOVR data (right of Figure 1), we once again find that the plasma200

velocity is best captured by the NRT data (Figure 1d). The vast majority of the DSCOVR201

data lie along the red dashed line, with 94% of the NRT data within 10% of the science202

values. We find similar spread in the DSCOVR density comparison (Figure 1b) as we203

did for the ACE data (∼ 20% within ±10%). NRT data from both spacecraft appear204

to commonly underestimate the plasma density. Finally, considering the NRT temper-205

atures reported by DSCOVR we find 20% of the data within the ±10% lines, slightly less206

than the 30% found for the ACE data. We note that the DSCOVR spacecraft has been207

operational for a shorter interval, and so has experienced fewer extreme events (e.g. at208

larger np or V ).209

Figure 2 shows a similar comparison of the magnetic field data, comparing the NRT210

and science data for ACE (left) and DSCOVR (right). Statistically, the ACE data are211

peaked around the diagonal line of gradient unity, though there is wide spread in val-212

ues. This suggests that the magnetic field values are often corrected later on, sometimes213

by 10s of nT. There is noticeably less spread in the comparison of the BGSM
X values (Fig-214

ure 2a), though interestingly there are a series of values that seem to form a parallel dis-215

tribution to the red line. This would correspond to a small offset of 5 nT or less, where216

the NRT data under-reported the value of BGSM
X . There is also evidence of a distribu-217

tion perpendicular to the line of equality in the results for BGSM
X and BGSM

Y , perhaps218

representing a rotation of the magnetic field in the X-Y plane. We note that despite the219

spread in the field components reported by ACE, 68% of the NRT measurements of the220

total field magnitude (|B|) are within ±10% of the science values.221

When we compare the DSCOVR results (right of Figure 2), we again find that the222

NRT data are much more representative of the science data than was observed for ACE,223

with a clear diagonal distribution dominating the results. As with ACE, the NRT to-224

tal field strength (|B|) is also very close to that later found within the science data, with225

94% of the values being within 10%.226
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Figure 1. Comparison of the plasma moments in the NRT data with that recovered in the

science quality data. Left column (a, c, e) shows ACE between 1999 and 2015 (inclusive), right

column (b, d, f) shows DSCOVR between 2018 and mid-2019. The plasma moments shown

are the plasma density (a, b), bulk velocity (c, d), and ion temperature (e, f). The diagonal

red dashed line indicates where the data returned are equivalent, while the orange dashed lines

indicate the region where the NRT values are within ±10% of the science data.
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Figure 2. Comparison of the magnetic field values returned by the NRT data and science

data. The format is similar to Figure 1, with the ACE (1999 to 2015) shown on the left (a, c,

e, g) and DSCOVR (2018 to 2020) on the right (b, d, f, h). The top row shows the BGSM
X com-

ponent (a, b), the second row shows the BGSM
Y (c, d), while the third and fourth rows show the

BGSM
Z (e, f) and total field |B| (g, h).
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3.2 Data Continuity227

The magnetosphere is a highly dynamic system that couples to the solar wind on228

a range of time scales (e.g. Coxon et al., 2019; Shore et al., 2019; Borovsky, 2020). Space229

weather models therefore often require information regarding the preceding interval of230

solar wind, rather than a single measurement of the current conditions. Incomplete data231

- those with communication gaps or missing measurements - may pose a problem for this232

approach. Data gaps have also been inferred to cause errors in the derivation of coupling233

functions (Lockwood et al., 2019). There are many reasons why data may be missing from234

the real time data stream, or should be ignored. Missing data are generally flagged with235

a code according to the reason, be it an operational consideration (e.g. downlink issues)236

or problems/failure of the measurement or recording. It may be possible to develop be-237

spoke solutions to account for different missing data flags, however in the following we238

treat all missing and/or flagged data identically.239

3.2.1 Data Gap Occurrence240

Figure 3 demonstrates the average yearly occurrence of data gaps with different241

lengths in the NRT data from ACE (top) and DSCOVR (bottom). The equivalent dis-242

tributions for the science data sets are shown in black. Starting with ACE, we can see243

that the most common data gap length in both data sets is five minutes or less, i.e. five244

or fewer data points. We observe that there are nearly 200,000 gaps per year of less than245

five minutes in the plasma data (Figure 3b). The ACE NRT magnetic field data is more246

complete by comparison, and whilst the sub-five-minute data gaps are the most common247

type, there are only around 4000 of these per year. Comparing the scientific and NRT248

data, we see that the ACE scientific magnetic field data is much more continuous, with249

several orders of magnitude fewer gaps per year (of any duration). Meanwhile, for the250

ACE plasma data we see that there are generally fewer gaps shorter than ∼ 60 minutes251

in the science data, but there are on average more gaps of greater duration, perhaps as252

longer windows of data are later flagged for removal.253

DSCOVR NRT data has noticeably fewer data gaps per year than its ACE coun-254

terpart, particularly considering the plasma data. However, we do see the same patterns,255

with sub-five-minute data gaps being the most frequently observed, and the plasma data256

exhibiting more numerous gaps per year than the magnetic field. For instance, there were257

around 10,000 sub-five-minute data gaps per year in the plasma data, while there are258

approximately 4000 per year in the NRT magnetic field data. If we consider the equiv-259

alent distributions for both the DSCOVR scientific magnetic field and plasma data, we260

see fewer gaps of less than five minutes, but additional gaps of an hour or longer, sug-261

gesting that - as with ACE - longer periods of data are later discarded.262

3.2.2 Windowed Data Validity263

Space weather models often require continuous data as an input, and many numer-264

ical or computational techniques will not return a result should even a single entry be265

missing. For example, a model may require a window of 30 minutes of continuous so-266

lar wind data as an input (c.f. A. W. Smith, Forsyth, Rae, Garton, et al., 2021). It is267

therefore important to examine the fraction of input data windows that gaps would in-268

validate. This is examined in Figure 4, for the ACE (top) and DSCOVR (bottom) NRT269

data, plotted in green. In Figure 4 the windows are evaluated as they would present in270

an operational setting, such that the stride between adjacent windows of data is equal271

to the cadence of the data (one minute), and therefore the intervals of data tested over-272

lap.273

When using the ACE NRT data (Figure 4a, b), we can see that if five minutes or274

fewer of continuous data are required (i.e. the model requires an interval of five minutes275
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Figure 3. The average yearly occurrence of data gaps of different lengths for the ACE (top:

a, b) and DSCOVR (bottom: c, d) NRT data, over 16 and 3 years respectively. This is shown for

the magnetic field data (left: a, c) and plasma moments (right: b, d). The results for the science

data are provided in black. Note the logarithmic y-axes.
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of solar wind data as input) then around 90% of the magnetic field data will be avail-276

able. However, should plasma data also be required then only 55% of input data are valid.277

As the required length of input window increases, the percentage of valid data intervals278

decreases. If two hours (120 minutes) of continuous input are required then only 75%279

of magnetic field data suffice, and approximately 1% of plasma data are available.280

Comparatively, DSCOVR NRT data are more complete (Figure 4c, d), noting the281

different vertical axis scale. For DSCOVR, should a five minute window of data be re-282

quired then 97% of magnetic field data and 96% of plasma data will be valid. Again, this283

decreases with longer input window lengths, reaching 86% of magnetic field and 72% of284

plasma data as the input window length reaches 120 minutes. While this represents a285

major improvement on ACE, it still has the potential to be a serious issue for forecast-286

ing models.287

Given how common we have shown short data gaps to be in the NRT data (Fig-288

ure 3), it is useful to consider how the use of interpolation schemes can increase the quan-289

tity of valid, continuous windows of data. Figure 4 shows the application of two max-290

imum lengths of interpolation, in addition to the use of the “raw” data. We can see that291

if gaps of five minutes or fewer are interpolated (orange stars in Figure 4) then the frac-292

tion of valid data intervals increases significantly for both spacecraft and types of data.293

If the interpolation is permitted over larger gaps of 15 minutes or less (blue crosses in294

Figure 4) then the fractions increase again, though this is a smaller improvement than295

was found for the change from the raw data to interpolation over five minutes or less.296

4 Example NRT Forecasting of Ground Magnetic Activity297

We now qualitatively compare space weather forecast models using science qual-298

ity data and NRT data. The example model we use is the CNN-based (Convolutional299

Neural Network) model developed by A. W. Smith, Forsyth, Rae, Garton, et al. (2021),300

designed to provide a probabilistic forecast as to whether the rate of change of the ground301

magnetic field (R) would exceed certain fixed thresholds at an observatory on the ground302

(i.e. may be linked to an enhanced GIC risk). In these examples we use the magnetic303

field at the LER (Lerwick) magnetometer station in Scotland as our target. For full model304

details the interested reader is directed to A. W. Smith, Forsyth, Rae, Garton, et al. (2021).305

The models were trained on data between 2003 and 2014, with 1998 to 2002 be-306

ing used as a validation set during training. This means that the data from 2015 and307

2016 can be used as an unseen test of model performance, e.g. the selected storms dis-308

cussed below. The models require copious amounts of data to train, covering as com-309

plete a record of possible solar wind conditions as can be sourced, and thus we are lim-310

ited to the ACE datasets. Training a model on the combined ACE and DSCOVR datasets311

is beyond the scope of this work. Following on from Section 3.2, we interpolate linearly312

over gaps smaller than 15 minutes in order to maximize the data availability, and per-313

form this consistently for both the ACE NRT and science data. We note that in an NRT314

data situation we will not necessarily know the next available value as the more recent315

time intervals may have no data, but we can repeat the last recorded value for a short316

interval of time. A forecast horizon of 180 minutes has been used for both models.317

First, we show the 17th/18th March 2015 St Patrick’s Day storm in Figure 5, which318

has been previously noted for its ionospheric (e.g. Astafyeva et al., 2015) and ground im-319

pacts (e.g. Carter et al., 2016; Kozyreva et al., 2018). We can compare the NRT and sci-320

ence data in the top three panels of Figure 5, from which we can observe some of the re-321

sults previously discussed in Section 3. It is clear from the velocity and density that there322

is more rapid temporal variability in the NRT data than is seen in the post-processed323

ACE data (i.e. Figure 5a, c compared to Figure 5b, d). This short term-variability would324

explain some of the scatter in Figures 1. There are also significant data gaps in the sci-325
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Figure 4. The fraction of data windows that are continuous, without data gaps for the ACE

(top: a, b) and DSCOVR (bottom: c, d) NRT data. The results for the magnetic field (left: a,

c) and plasma data (right: b, d) are shown. The fraction of complete data windows are provided

as a function of input window length required to be continuous. Three different interpolation

schemes are presented: no interpolation (green circles), interpolation of gaps 5 minutes or shorter

(orange stars) and interpolation of gaps 15 minutes or shorter (blue crosses).

–11–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

Figure 5. Space weather model forecasts produced during a geomagnetic storm in March

2015. ACE NRT data and the relevant model are shown on the left (a, c, e, g, i), while the sci-

entific ACE data and relevant model are on the right (b, d, f, h, j). The solar wind velocity,

density, magnetic field strength and BGSM
Z are shown in the top three panels (a, b, c, d, e, f),

while the rate of change of the horizontal ground magnetic field observed at LER (R) is shown

in the fourth panel (g, h). Four model variants are shown, forecasting whether four thresholds

of R will be exceeded (horizontal lines in panels g, h). The bottom panels (i, j) show the model

predictions, while the horizontal bars indicate the perfect forecast and the ’maximum’ threshold

exceeded.

ence density data that are not present in the NRT data (e.g. a few hours around 1200326

UT on the 17th March), suggesting that this data was later removed. On the other hand,327

there is a data gap in the NRT magnetic field data that appears to have been filled with328

further post-processing (e.g. around 1800 UT on the 17th March). Overall, there is an329

extended period during this storm when both the NRT and science-based models are un-330

able to produce a forecast, corresponding to a gap in the NRT magnetic field data and331

the scientific density data, emphasizing the operational challenges in providing space weather332

forecasts. This appears to be precisely the kind of interval when predictions of large ground333

magnetic field variability would be desirable. Nonetheless, both models show increased334

probabilities during the storm, qualitatively reflecting the ground truth.335

Next, we show a second example geomagnetic storm (Figure 6), this time on the336

22nd/23rd June 2015, which was notably observed to have adverse impacts on a mid-337
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Figure 6. Space weather model forecasts produced during a geomagnetic storm in June 2015,

with the same format as Figure 5.

latitude railway system (Liu et al., 2016). This storm offers opportunities to further ex-338

plore several similarities and differences between the scientific and NRT driven models.339

The increased short-term variability present in the NRT data is once again apparent, and340

significant intervals of the density data on the 21st June are not present. Inspecting the341

NRT solar wind velocity data (Figure 6a) we see two anomalous spikes; at 0400 UT on342

the 21st June and at 1000 UT on the 23rd June. Naively in the NRT data these may343

initially resemble very large solar wind shocks, to which space weather models may re-344

spond. However, we see that the NRT model does not report increased probabilities around345

these intervals, presumably as the model has seen this anomalous behavior in the train-346

ing data and only responds to more sustained changes in the solar wind that are corrob-347

orated by changes in other solar wind parameters.348

Regarding the predicted model probabilities, from single case studies we cannot quan-349

titatively assess the performance of the models, however we can see that during the pe-350

riod of disturbed ground magnetic field activity during the storm that the models are351

reporting elevated probabilities, as would be desirable, and the NRT and science-based352

model results qualitatively appear similar. We may compare the metrics returned by the353

models when applied to the “unseen” NRT and science data between 2015 and 2016. Fig-354

ure 7 shows three metrics as a function of threshold of the ground magnetic field: the355

receiver-operator characteristic (ROC), precision-recall (PR) score and Brier skill score356

(BSS). In terms of ROC score, the scientific and NRT models perform very similarly, while357
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Figure 7. Metrics returned by the NRT and Science models when applied to the test data

set (2015 - 2016) as a function of threshold of ground magnetic field variability. The receiver-

operator characteristic (a), precision-recall (b), and Brier skill score (c) metrics are shown. An

input of 60 minutes of solar wind data are used, along with a forecast horizon of 180 minutes (as

in Figures 5 and 6). The error bars represent the 95% confidence intervals calculated from 100

iterations of a bootstrap method (with replacement).

in terms of PR and BSS the model based upon the scientific data performs slightly bet-358

ter. We note that due to the presence of different data gaps the metrics are not precisely359

comparable, and this will be most evident at the highest thresholds which are less fre-360

quently exceeded. Nonetheless, the NRT-based model is achieving at least comparable361

performance to the model employing the science quality data.362

5 Discussion363

The magnetosphere reacts to the impinging solar wind on a range of timescales,364

and the results are heavily dependent upon the history of the coupled system. For ex-365

ample, even the response to fast changes in solar wind dynamic pressure (e.g. Yue et al.,366

2010; Shinbori et al., 2012; Oliveira & Raeder, 2015; A. W. Smith, Forsyth, Rae, Rodger,367

& Freeman, 2021) may be modulated by the magnetospheric state that was induced in368

the preceding intervals (Zong et al., 2021). Further, characteristic timescales for the re-369

sponse of the currents linking the magnetosphere and ionosphere, and consequent ground370

magnetic field variability, range from 10s of minutes to several hours (Coxon et al., 2019;371

Shore et al., 2019). Magnetospheric physics therefore dictates that space weather mod-372

els need to interpret - in some fashion - the history of the coupled solar wind magneto-373

sphere system. There are two main methods in which models can infer the historical be-374

havior: first, they can use statistical properties of a period of data, such as the variabil-375

ity or range of a solar wind property (e.g. Wintoft et al., 2017; Shprits et al., 2019; Zhelavskaya376

et al., 2019; Camporeale et al., 2020; A. W. Smith et al., 2020). Second, models can pro-377

cess entire time intervals of data and extract the necessary information themselves (e.g.378

Kunduri et al., 2020; Keesee et al., 2020; A. W. Smith, Forsyth, Rae, Garton, et al., 2021).379

Discontinuities and unreliable values in the NRT solar wind data thus pose potential risks380

and limitations to the validity and utility of these models.381

–14–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

Table 1. The percentage of magnetic field data with an inconsistent sign in the scientific and

NRT data sets.

Magnetic Field Component ACE DSCOVR

BGSM
X 6.9% 1.8%

BGSM
Y 7.4% 1.9%

BGSM
Z 12.7% 3.1%

5.1 Data Validity382

Figures 1 and 2 clearly showed that there are often differences between the reported383

NRT data and the values that are later found in the post-processed science data. We also384

showed that the velocity is the most reliable plasma moment returned by the NRT data,385

compared to the density and temperature. Regarding the magnetic field, while there is386

considerable spread in the reported magnetic field components, the total magnetic field387

magnitude is mostly within 10% of the reported NRT value. Meanwhile, we note the lim-388

ited interval for which DSCOVR data were available has constrained the solar wind con-389

ditions to which DSCOVR has been exposed. On inspection, we showed examples of two390

types of “error” that are present in the NRT data: first, the NRT data tend to exhibit391

short time scale variability that can be resolved with post-processing; second, there are392

occasionally very transient anomalous values present in the data (e.g. spikes, Figure 6).393

These factors have strong implications for space weather model design and devel-394

opment. The differences between the science and NRT data suggest that - as is best prac-395

tice - models should be trained upon the data type that will be used in the future. For396

example, the larger short term variability of the NRT data will need to be found in both397

the training and evaluation data. We showed that in Figures 5 and 6, the selected model398

was able to compensate for the additional short-timescale variability in the NRT data.399

Additionally, artifacts in the data (such as the anomalous spikes in Figure 6) may also400

be tolerated by some models. However, this is a particular problem if a statistical pa-401

rameter such as the range of the solar wind velocity is evaluated (e.g. Zhelavskaya et al.,402

2019; A. W. Smith et al., 2020). This may require simple additional processing of the403

NRT data, e.g. through smoothing or averaging, prior to its use by a forecasting model.404

Space weather models may employ solar wind-magnetosphere coupling functions405

(e.g. Newell et al., 2007; Milan et al., 2012) in order to assess the geoeffectiveness of the406

solar wind (e.g. Tan et al., 2018). We note that the selection of coupling function requires407

careful consideration of the magnetospheric prediction to be made (Lockwood & McWilliams,408

2021; Lockwood, 2022). However, one commonality between the various coupling func-409

tions is their reliance on the orientation of the interplanetary magnetic field, and there-410

fore the relative sign and value of BGSM
Y and BGSM

Z , in particular. As we have shown in411

Figure 2, particularly with the ACE NRT data, the reliability of these components must412

be considered with care. Of greatest concern are instances showing evidence of BGSM
Y413

and BGSM
Z changing sign upon further processing/calibration (e.g. data in the upper left414

or lower right quadrants of Figure 2). Table 1 shows the percentage of magnetic field data415

that has an inconsistent sign between the scientific and NRT data sets. We can see that416

the fractions are quite considerable, and that - as in the previous evaluations - the DSCOVR417

data are more consistent than that from ACE. The reliability (and short term variabil-418

ity) in other NRT solar wind parameters, such as the density, should also be considered.419

These would result in large fluctuations of the coupling functions that would not be present420

in the post-processed science data.421
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5.2 Data Continuity422

To provide a useful and practical NRT forecast of geomagnetic conditions it is im-423

portant to maximize the length of time for which it is available. Many magnetospheric424

models require several hours of historical measurements order to provide a result (e.g.425

Wintoft et al., 2015; Bortnik et al., 2016; Keesee et al., 2020; A. W. Smith, Forsyth, Rae,426

Garton, et al., 2021; McGranaghan et al., 2020). The implementation of such models re-427

quires careful design, given the nature of the input data available. Additionally, many428

space weather models will also wish to maximize the data available to allow the largest429

possible training data sets.430

In this work we have shown that data gaps are more numerous in the NRT data431

sourced from ACE than they are in the data from DSCOVR. Therefore, if only a lim-432

ited quantity of training data is required then the DSCOVR data would appear to be433

a good choice. However, the ACE NRT data covers a much longer period of time. This434

is important as heliospheric conditions and space weather vary over the solar cycle (Luhmann435

et al., 2002; Chapman et al., 2018, 2020) and between cycles (Lockwood et al., 2014; Ha-436

jra et al., 2021; Reyes et al., 2021), while rare, extreme events are the most concerning437

(Thomson et al., 2011; Kilpua et al., 2015; Vennerstrom et al., 2016; Wintoft et al., 2016;438

Owens et al., 2021). For this reason, the longer time-span ACE NRT data is an appeal-439

ing training data set despite its limitations.440

We also showed that short data gaps are the most common, for both ACE and DSCOVR441

NRT data. These frequent but short data gaps significantly impair the continuity of the442

data. For example, if an hour of continuous data is required as a model input then only443

3% of ACE NRT plasma data is valid (Figure 4b). A simple solution is to interpolate444

over short data gaps. Interpolating over gaps of five minutes or less significantly increases445

the portion of valid ACE NRT plasma data to 80% (if an hour of continuous data is re-446

quired). Previous forecasting models, using the somewhat analogous one-minute reso-447

lution OMNI data, have applied simple linear interpolations over gaps of 10 (Keesee et448

al., 2020) or 15 minutes (Wintoft et al., 2015; A. W. Smith, Forsyth, Rae, Garton, et al.,449

2021) to good effect. Figure 4 also shows that the data gaps are far more prevalent in450

the plasma data, and so models have been developed that only use the magnetic field451

data (e.g. Wintoft et al., 2015). Such models may give slightly impaired performance,452

but they would allow forecasts to be produced during times when the more complete mod-453

els would otherwise be unavailable. Additionally, techniques such as sub-sampling of the454

available data (e.g. McGranaghan et al., 2020) may be implemented in such a way as455

to reduce the effects of short data gaps.456

While space weather forecasts have often employed simple (e.g. linear) interpola-457

tion methods, reconstructions of the solar wind data using statistical methods have also458

shown great promise (Kondrashov et al., 2014). A “pattern matching” approach could459

also be employed to identify historical analogous intervals to provide a surrogate input460

(c.f. Haines et al., 2021). Meanwhile, longer time-scale reconstruction of solar wind data461

has also been performed using ground based indices (Machol et al., 2013; Kataoka & Nakano,462

2021) and magnetosheath data (Nabert et al., 2015). However, while ground magnetome-463

ter data may be available in near-real time, filling NRT data gaps with such reconstruc-464

tions may be challenging in an operational forecast.465

If interpolation is employed then it is useful to consider the solar wind autocorre-466

lation timescales, in order to maximize the data available while minimizing the impact467

of the interpolation on the quality of the input data. The autocorrelation describes how468

similar a time series is with a lagged version of itself, and is evaluated for a series of dif-469

ferent time offsets, or lags (Appendix A). Figures 8a and 8b show the autocorrelation470

and partial autocorrelation of four selected NRT solar wind parameters. We will assess471

these qualitatively. The precise autocorrelations depend on solar wind conditions, but472

such an analysis is beyond the scope of this work. The autocorrelations have been cal-473
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culated for the longest continuous intervals of DSCOVR NRT data, though we note that474

the results do not change significantly based upon the time period selected (so long as475

it is of sufficient duration and includes both dynamic and quiescent solar wind).476

The solar wind properties tested all show significant autocorrelations beyond the477

60 minutes shown in Figure 8I, though we do see that the autocorrelation of BGSM
Z has478

nearly reduced to the 95% confidence bound by 60 minutes. This suggests that - in a broad479

statistical sense - gaps shorter than 60 minutes could be reasonably interpolated. How-480

ever, this completely neglects the importance of short-timescale variability in the cou-481

pling of the solar wind and magnetosphere, for example rapid changes in parameters found482

during phenomena such as interplanetary shocks. Therefore, while quiescent solar wind483

data may undoubtedly be interpolated over relatively large intervals, such large inter-484

polation is unadvised during the active intervals of most importance to space weather485

models.486

An additional complication is created if the data gap is present in the most recently487

acquired NRT data. Consequently there will be no opportunity to interpolate (e.g. lin-488

early) as one side of the data gap is unknown. In this case techniques such as repeat-489

ing the last recorded value can be performed, and we should consider the partial auto-490

correlation: it ignores the data within the lag period (i.e. it treats the lag period as a491

gap). For the solar wind velocity and density (Figure 8a II and b II) the partial auto-492

correlations diminish rapidly, and are within the 95% confidence intervals by around 15493

and 5 minutes, respectively. Meanwhile, for the solar wind magnetic field magnitude and494

BGSM
Z (Figure 8c II and d II) the significant partial autocorrelation timescales are short495

at around 8 and 5 minutes, respectively. From this we can conclude that - again a sta-496

tistical sense - repeating the last recorded value for approximately five minutes will not497

hugely impact the data quality, while performing this for 15 minutes or more will begin498

to become problematic, particularly in active geomagnetic conditions.499

It would be possible to use this kind of analysis to set variable interpolation lim-500

its separately for the magnetic field and plasma data, if models only required one type501

of data (c.f. Wintoft et al., 2015). We emphasize that these are statistical results on a502

long time interval of continuous data, and therefore likely not representative of more ex-503

treme or highly transient solar wind conditions under which data gaps may be more likely504

(for example due to instrument saturation effects). Additionally, these autocorrelations505

have been calculated from the NRT data which, given the short-time scale variability we506

have shown above, may cause this to underestimate the “true” solar wind autocorrela-507

tion timescales. Nonetheless, these provide a useful estimate of approximate interpola-508

tion timescales for the NRT data.509

Generally, linear interpolations have been employed in the past (e.g. Wintoft et al.,510

2015; A. W. Smith, Forsyth, Rae, Garton, et al., 2021), however in the future more com-511

plex interpolation methods may give more confidence to interpolating over larger data512

gaps, for example using similar historical analogues (Haines et al., 2021), or the use of513

auto-regressive models, given the high level of autocorrelation observed. Nonetheless, fu-514

ture space weather missions should look to minimize NRT data gaps, those due to in-515

strument saturation effects for example (e.g. Nicolaou et al., 2020).516

6 Summary and Conclusions517

Space weather hazards pose a severe threat to infrastructure such as electricity net-518

works. Recognizing this threat, models have been developed to forecast magnetospheric519

parameters, such as indices (Tan et al., 2018; Tasistro-Hart et al., 2021; Chakraborty &520

Morley, 2020) or direct space weather consequences such as auroral-related particle pre-521

cipitation (McGranaghan et al., 2020), radiation belt enhancements (Forsyth et al., 2020),522

or ground magnetic perturbations (Wintoft et al., 2015; Keesee et al., 2020; A. W. Smith,523
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Figure 8. The autocorrelation (left, I) and partial autocorrelation (right, II) of four NRT

solar wind measurements made by DSCOVR. The autocorrelations for the solar wind velocity (V ,

a), proton density (np, b), magnetic field magnitude (|B|, c) and BGSM
Z component of the mag-

netic field (d) are presented. The shaded blue regions represent the 95% confidence bound within

which points exhibit no significant autocorrelation. The autocorrelations were evaluated during

the longest periods of continuous data present between 2018 and 2020 (inclusive). For the plasma

properties (a, b) the autocorrelations were calculated on 350 hours of data between 01/05/18 and

16/05/18, while for the magnetic field properties (c, d) the autocorrelations were evaluated for

370 hours of data between 29/05/19 and 13/06/19.
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Forsyth, Rae, Garton, et al., 2021). Such space weather models are most often trained524

and evaluated on post-processed scientific quality data from spacecraft upstream of the525

Earth at the L1 point. In this work we have assessed the validity and continuity of the526

Near-Real-Time (NRT) data that is available much more rapidly, and showed an exam-527

ple of a forecasting model using such data.528

When the NRT data are compared to the post-processed, science quality data we529

found that the NRT data are subject to greater short-term variability and occasional anoma-530

lous values. Nonetheless, the solar wind velocity is mostly accurate to within ±10%. While531

the NRT solar wind density and temperature are generally close to the more processed532

values, they are also subject to greater uncertainty. Regarding the magnetic field, the533

total field magnitude is generally reported to within 10% of its processed value. Mean-534

while, there is a greater spread in the individual components of the field, including some535

occasions when the sign of the BGSM
Y and BGSM

Z is later corrected. Some models may536

be able to compensate for the differences between the science quality and NRT data (if537

they are trained on the appropriate data source), while others may require additional538

data pre-processing.539

When considering an operational space weather model it is important to maximize540

its availability. To this end we investigated the occurrence and lengths of data gaps that541

could impede an operational model. We found that short data gaps are frequently found542

in the NRT data, and are more numerous in the plasma data (compared to the magnetic543

field data). Additionally, DSCOVR NRT data shows gaps less frequently than the NRT544

data from ACE. Nonetheless, short interpolations (e.g. over gaps of five minutes or less)545

can dramatically increase data and hence model availability, even when long continuous546

windows are required.547

Appendix A Autocorrelation Analysis548

In Figure 8 we evaluate the autocorrelation functions of several solar wind param-549

eters. Practically, we employ the python statsmodels package. Theoretically, if we let550

x1, x2, ... xn be the observations of a sample of the time series, we take the mean of the551

time series as:552

x̄ =
1

n

n∑
t=1

xt (A1)

The sample auto-covariance function for lag h (h < n) is then defined as:553

γ̂(h) = n−1
n−h∑
t=1

(xt+h − x̄)(xt − x̄) (A2)

We then take the sample autocorrelation function for lag h as:554

ρ̂(h) =
γ̂(h)

γ̂(0)
(A3)

Meanwhile, the sample partial autocorrelation is the sample autocorrelation between555

xt and xt+h but with the linear dependence of xt on xt+1 through xt+h−1 removed. For556

more details the interested reader is directed to Brockwell and Davis (2002).557
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